Page 40 - 新思维数学活动用书7 样章
P. 40

2.6  Inequalities




                     9  Zara looks at the inequality z < −5.



                                   A list of the integer
                                values that z could be is:
                                  −4, −3, −2, −1, 0, 1, …




                         Is Zara correct? Explain your answer.

                     10 For each of these inequalities, write down:
                         i   the smallest integer that p could be
                         ii  a list of the integer values that p could be.

                         a  p > 8                        b  p > −3                        c  p > 4.7
                     11 For each of these inequalities, write down:
                         i   the largest integer that q could be
                         ii  a list of the integer values that q could be.

                         a  q < −1                       b  q < 16                        c  q < 3.9


                     Challenge
                     12 Copy each number line and show each inequality on the number line.

                         a  x > 1.5                                      b  x < 3.75
                                        0     1     2    3     4                          1    2     3    4     5


                         c  y > 4.6                                      d  y < 8.25
                                         3    4     5     6                               5    6     7    8     9
                     13 Write down the inequality shown on these number lines. Use the letter y.


                         a                                                b
                                –2   –1    0     1     2                         10   11    12   13



                         c                                                d
                                2     3    4     5                              25    26    27   28    29


















                                                                                                                   39
   35   36   37   38   39   40   41